
AChecker: Statically Detecting Smart Contract
Access Control Vulnerabilities

Asem Ghaleb
University of British Columbia

Vancouver, Canada
aghaleb@alumni.ubc.ca

Julia Rubin
University of British Columbia

Vancouver, Canada
mjulia@ece.ubc.ca

Karthik Pattabiraman
University of British Columbia

Vancouver, Canada
karthikp@ece.ubc.ca

Abstract—As most smart contracts have a financial nature
and handle valuable assets, smart contract developers use access
control to protect assets managed by smart contracts from being
misused by malicious or unauthorized people. Unfortunately,
programming languages used for writing smart contracts, such
as Solidity, were not designed with a permission-based security
model in mind. Therefore, smart contract developers implement
access control checks based on their judgment and in an ad-
hoc manner, which results in several vulnerabilities in smart
contracts, called access control vulnerabilities. Further, the in-
consistency in implementing access control makes it difficult to
reason about whether a contract meets access control needs
and is free of access control vulnerabilities. In this work, we
propose AChecker – an approach for detecting access control
vulnerabilities. Unlike prior work, AChecker does not rely on pre-
defined patterns or contract transactions history. Instead, it infers
access control implemented in smart contracts via static data-
flow analysis. Moreover, the approach performs further symbolic-
based analysis to distinguish cases when unauthorized people can
obtain control of the contract as intended functionality.

We evaluated AChecker on three public datasets of real-world
smart contracts, including one which consists of contracts with
assigned access control CVEs, and compared its effectiveness with
eight analysis tools. The evaluation results showed that AChecker
outperforms these tools in terms of both precision and recall. In
addition, AChecker flagged vulnerabilities in 21 frequently-used
contracts on Ethereum blockchain with 90% precision.

Index Terms—Smart contract, security, access control, data-
flow analysis

I. INTRODUCTION

Smart contracts are small programs deployed and running
on top of a blockchain. Several blockchain networks, such
as Ethereum [1] and Cardano [2], support running smart
contracts, with Ethereum currently being the most popular
blockchain platform. Ethereum smart contracts are written in
high-level Turing-complete languages, e.g., Solidity [3], and
get compiled to low-level EVM bytecode that is deployed to
the blockchain. The bytecode deployed on Ethereum permis-
sionless public networks is visible to the public, and can be
invoked by anyone who has an account on the blockchain [4].

As smart contracts can be called by any user on the
blockchain, smart contract developers typically implement
access control to manage who can call specific functions
within the contract or execute critical actions, such as with-
draw money or destroy the contract and remove it from the
blockchain. Unfortunately, Solidity was not designed with a
permission-based security model in mind. Therefore, smart

contract developers implement access control checks in an
ad-hoc manner, such as through the use of language-special-
constructs, e.g., function modifier, or assertions and condi-
tional statements, e.g., require(access-control-condition).

Failing to implement access control checks properly can
result in either (1) weak checks that can be bypassed by
unauthorized users, or (2) missing access control for code
statements that need to be protected. We call these access
control vulnerabilities. There have been many instances of
real-world attacks due to access control vulnerabilities. For
example, in May 2021, an attack targeting a smart contract
used by the ValueDeFi platform [5] led to the loss of about
10M. The attack was due to a mistake in a single line of code
that resulted in an access control vulnerability, which enabled
the attacker to make themselves an owner of the contract.
Another example is the hack that targeted Parity Wallet and
led to locking out (freezing) about 280M worth of Ether [6].
The attack was due to having an unprotected function in the
contract, which enabled the attacker to reset the variables
storing addresses of wallet owners and destroy the contract,
thereby freezing all the funds in the wallet.

Static analysis can help identify access control vulnerabili-
ties before the deployment of the contract on the blockchain.
This is important as it is difficult to modify a smart contract
after its deployment, and transactions are immutable; hence
losses cannot be rolled back. Unfortunately, statically ana-
lyzing smart contracts for access control vulnerabilities is a
challenging problem because: (1) The lack of access control
policy specifications make it difficult to precisely identify
access control checks. (2) Smart contracts may contain code
patterns that look like vulnerabilities but are really part of
the contracts’ functionality, and it is not straightforward to
statically distinguish these patterns from vulnerabilities due to
the lack of the contract access control specifications.

The most relevant prior work on detecting access control
vulnerabilities are Ethainter [7] and SPCon [8]. Ethainter
performs information-flow analysis to detect five types of
access control vulnerabilities. It relies on pre-defined rules
to identify the access control checks, assuming contracts are
written in a specific style, and compilers always generate
certain bytecode patterns for these access control checks. Our
results show that such pre-defined rules do not generalize well,
making Ethainter fail on a wide range of samples. Further, the

pre-defined patterns for access control checks are not precise
enough and thus result in false alarms.

Unlike Ethainter, SPCon does not rely on specific code
patterns but rather analyzes smart contracts for permission
bugs through mining access control roles using the contract
transaction history available on the blockchain. To mine access
control roles, SPCon assumes that the analyzed contract have
transaction record for the various contract functions; however,
not all contract functions get called and have transactions. This
is because these functions only get called in specific circum-
stances, e.g., to remove smart contracts from the blockchain.
Further, SPCon assumes each transaction is benign and is
performed by an authorized account of the function, as per
the desired contract security policy. However, this cannot
be guaranteed, especially for smart contracts having access
control vulnerabilities.

Besides SPCon and Ethainter, other approaches [9]–[14]
target various types of smart contract bugs, including vulner-
abilities due to missing access control. However, they do not
focus on contract-wide access control vulnerabilities resulting
from weak and missing access control but rather analysis
missing access control for specific code statements, mostly
based on pre-defined access control patterns.

In this work, we propose an efficient approach, AChecker
(Access Control Checker), for discovering access control vul-
nerabilities in smart contracts. Our key insight for identifying
access control checks is that they have unique functionality
that can be inferred by analyzing data dependencies [15] in
the conditions forming the checks. After identifying access
control checks, we detect access control vulnerabilities by
analyzing data dependencies between the data inputs from the
contract users and (a) state variables storing access control
data and (b) a set of predefined code statements. The main
intuition behind our analysis is that these “critical” instructions
can only be manipulated by trusted users, and thus should be
protected by access control checks. That is, we formulate the
detection of access control vulnerabilities as a taint analysis
problem [16], without relying on pre-defined access control
patterns or existing transactions.

Furthermore, to avoid reporting false-positive results, our
analysis identifies cases of potentially intended behaviors. We
assume a behavior is intended when the code implements non-
access control constraints that allow manipulating the access
control data only under specific conditions. Our intuition be-
hind this heuristic is that having non-access control constraints
to guard access control data under specific conditions implies
that the developer intentionally implemented this code be-
havior. We employ symbolic execution analysis to synthesize
constraints under which manipulation of access control data
occurs; we then separate potentially intended behaviors from
more certain access control vulnerabilities.

To the best of our knowledge, AChecker is the first technique
that statically reasons about access control checks without
requiring either pre-defined code patterns or pre-existing
transactions history. Further, the intended behavior is reported
by the current analysis tools as vulnerabilities, and AChecker

is the first to optimize for high-precision by analyzing for
intended behavior cases and separating them as potentially
intended cases, thereby minimizing false alarms.

We evaluate AChecker on three datasets collected by prior
work: the first one, CVE [8], consists of 15 contracts with
access control vulnerabilities; the other two datasets, Smart-
Bugs [17] and Popular-contracts [18], are large dataset of real-
world Ethereum contracts, with 47,518 and 3,000 contracts,
respectively. For our evaluation, we assess the efficiency of
AChecker by comparing it to that of eight existing tools
that target access control vulnerabilities, namely SPCon [8],
Ethainter [7], Securify [9], Manticore [10], Maian [11],
Mythril [12], Slither [13], and Smartcheck [14].

We summarize our main contributions below.
• Propose a novel static data-flow-analysis-based technique

for efficient identification of access control checks, re-
lying on neither pre-defined code patterns nor existing
transactions history, unlike other tools.

• Propose a novel symbolic execution-based approach for
reducing false-positives by automatically inferring cases
where untrusted users are allowed to manipulate access
control data as an intended behavior of the contract.

• Combine our proposed methods in a consolidated ap-
proach, AChecker, for detecting access control vulnera-
bilities. We implement the approach in an automated tool
and make the implementation publicly available [19].

• Evaluate AChecker on three public datasets and show
that it outperforms all eight existing approaches used
as a baseline, in terms of both precision and recall.
Furthermore, it is able to detect a large number of
vulnerable contracts in SmartBugs and Popular-contracts
datasets with a high precision.

II. MOTIVATING EXAMPLES

In this section, we use real-world examples to discuss differ-
ent types of access control vulnerabilities and the challenges of
finding them in smart contracts. Moreover, we discuss cases of
potentially intended behavior in the contract that are reported
as access control vulnerabilities by current analysis tools.

Our definition of access control vulnerabilities is based on
prior work [7]–[14]. We classify access control vulnerabilities
into two main categories, according to their cause. The first
group involves vulnerabilities that occur due to vulnerable
access control checks that can be bypassed by attackers. We
refer to these as “violated access control checks (VACC)”. The
second group consists of the vulnerabilities that arise due to
the lack of access control for critical instructions. We refer to
these as “missing access control checks (MACC).”

A. Violated Access Control Check (VACC)

The code in Fig. 1 is simplified from a real-world contract
that implements an Ethereum token for Business Alliance
Financial Circle (BAFC) [20]. The contract was disclosed as
having an access control vulnerability and is assigned the CVE
“CVE-2018-19830”. In this contract, the owner state variable
(defined in line 2) is used to store the address of the owner

2

of this contract, and the frozenAccount (line 3) is a state
mapping that stores frozen accounts that cannot perform spe-
cific actions. The modifier1 onlyOwner (lines 5-11) checks if
the caller is the owner, and the modifier unFrozenAccount
(lines 12-15) checks if the address of the caller is not frozen.
The onlyOwner modifier is used to protect the functions
freezeAccount, switchLiquidity, and some others
(not shown in Fig 1). The unFrozenAccount modifier is
used in several functions, such as transfer.

1 contract BAFCToken {
2 address owner = msg.sender;
3 mapping (address => bool) public frozenAccount;
4 /****** modifiers ******/
5 modifier onlyOwner {
6 if (owner == msg.sender) {
7 _; }
8 else {
9 InvalidCaller(msg.sender);

10 throw;}
11 }
12 modifier unFrozenAccount{
13 require(!frozenAccount[msg.sender]);
14 _;
15 }
16 /****** Functions *******/
17 function UBSecToken () public {
18 owner = msg.sender;
19 totalSupply = 1.9 * 10 ** 26;
20 }
21 function freezeAccount(address target, bool freeze)

onlyOwner public {
22 frozenAccount[target]=freeze;
23 }
24 function switchLiquidity(bool _transferable) onlyOwner{
25 transferable=_transferable;
26 }
27 function transfer(address _to, uint _value)

unFrozenAccount onlyTransferable {
28 if (frozenAccount[_to]) {
29 InvalidAccount(_to, "Frozen receiver account");}
30 else {
31 balances[msg.sender]=balances[msg.sender].sub(

_value);
32 balances[_to] = balances[_to].add(_value);
33 }
34 }

Fig. 1. Real-world contract with violated access control checks.

The function UBSecToken (line 17) is used to initial-
ize the owner variable and some other data items. This
function is supposed to be defined as a constructor to get
executed when the contract is deployed to initialize the owner
with the address that creates (deploys) the contract. As a
constructor, it would not be part of the code running on
the blockchain. However, the developer made a mistake and
named the constructor UBSecToken instead of BAFCToken;
hence, the misspelled constructor leads to the UBSecToken
function to be callable by anyone. This mistake enables
anyone to make themselves an owner of this contract, and
perform actions such as switching the status of the token
liquidity using the switchLiquidity function (line 24).
Furthermore, the user who hijacks the ownership of this con-
tract can freeze/unfreeze any address having tokens managed
by the contract, thereby violating the access control check
unFrozenAccount and becoming able to control who can

1Function modifiers check conditions prior to the functions’ execution.

perform some actions, such as transferring or receiving tokens
using function transfer (line 27).

We found that Ethainter [7] does not report vulnerabili-
ties in this contract because Ethainter’s inference rules do
not recognize the access control check implemented by the
onlyOwner modifier. The code of onlyOwner was com-
piled to a bytecode pattern that does not match the style
expected by Ethainter’s inference rules due to an extra jump
block in the bytecode. Although this case can be fixed by
adding more rules, it is difficult to enumerate all such scenarios
generated by the compiler, and add inference rules for them.

Similarly, this contract is out of the scope of SPCon [8] as
there are only limited transactions on this contract’s functions,
and as discussed earlier, SPCon mines access control rules
from transactions. Thus, SPCon was not able to mine the
security policy of this contract to be able to detect the vulner-
ability. In addition, for scalability, SPCon only considers two
transactions executed in sequence to trigger vulnerabilities;
thus, it cannot detect access control checks attacked through
more than two transactions, such as unFrozenAccount
getting violated when onlyOwner gets violated.

Finally, to the best of our knowledge, no approach finds the
mapping between the violated access control checks and the
affected functions in the contract; hence, existing tools do not
find the contract function(s) that becomes accessible to attack-
ers when an access control check is violated and leave that for
developers to check it manually, which is difficult and time-
consuming for complex contracts. For example, in the contract
in this example, none of the existing tools report that the func-
tions freezeAccount, switchLiquidity, transfer,
etc., are accessible by attackers because onlyOwner is
violated in function UBSecToken.

B. Missing Access Control Check (MACC)

As mentioned earlier, the contract code may contain
critical instructions that have to be protected, so they
do not get executed or manipulated by attackers [21]–
[23]. For example, in the code excerpt shown in Fig-
ure 2, taken from a real-world contract [24], the instruction
selfdestruct(msg.sender) at line 2 will remove the
contract from the blockchain and send whatever amount is in
the contract balance to the address provided as a parameter
to the instruction (msg.sender). Therefore, only authorized
users, e.g., owner, should be allowed to invoke the function
removeContract. Further, the parameter of the instruction
selfdestruct should not be set by unauthorized users.

1 function removeContract() public {
2 selfdestruct(msg.sender);//remove contract from network
3 }

Fig. 2. Missing access control check example.

Several existing tools cannot detect the two vulnerabilities in
this example. For instance, the function removeContract
is called only once to destroy the contract, and hence SPCon
cannot detect these vulnerabilities because transactions to the
function removeContract (needed for SPCon to mine

3

1 modifier onlyOwner() {
2 require(owner()==_msgSender(),"Caller is not owner");_;
3 }
4 function owner() public view returns (address) {
5 return _owner;
6 }
7 //@dev Destroy contract and reclaim leftover funds
8 function kill() external onlyOwner {
9 selfdestruct(payable(_msgSender()));

10 }

Fig. 3. Protected selfdestruct reported as a vulnerability by prior work.

security roles) will only be available on the blockchain when
the attack is done and the contract is destroyed. On the other
hand, approaches relying on pre-defined patterns report high
false-positives when analyzing for these vulnerabilities. For
example, in the code in Figure 3, taken from an NFT contract
called “Sugoi NFT NYC” [25], Ethainter flags the function
kill, having selfdestruct (line 9), as vulnerable even
though it is protected by a secure access control modifier
onlyOwner. We found that Ethainter fails to recognize the
modifier onlyOwner protecting the function kill. This is
because onlyOwner calls the owner() function to obtain
the address of the owner, and Ethainter’s inference rules cannot
match patterns across functions. Ethainter looks for patterns
of access checks within connected code blocks; however,
calling another function from within the access check results
in jumping into other blocks to execute the function, which
makes it difficult for Ethainter to identify the access check.

C. Potentially Intended Behaviors

In some cases, the contract code may be intentionally
implemented to allow any user to update access control state
variables under specific conditions. Analysis tools should
distinguish these cases from exploitable true vulnerabilities to
maximize benefit of the analysis tools. We refer to these cases
as potentially intended behaviors. For example, in the code
excerpt in Figure 4, extracted from a real-world contract, the
function changeNameSymbol has an access control check
at line 4, so that only the owner of the contract, whose address
is stored in the owner state variable, can call it. On the other
hand, the contract has the function changeOwner, which
enables anyone to buy the contract’s ownership for 1000 Wei –
Wei is the smallest denomination of the Ether cryptocurrency.

We find that almost all the existing tools looking for
untrusted writes of access control data will report the
changeOwner function as a vulnerability since anyone can
change the owner state variable. However, this behavior is
intentional: the contract owner intentionally allowed anyone
to buy the ownership. When the paid amount gets transferred
to the current owner, the owner is set to the buyer’s address.

III. AChecker APPROACH

A. Overview of AChecker

Figure 5 shows the workflow of the proposed approach,
AChecker. The approach consists of three major steps. (1)
AChecker takes as input the contract bytecode, and performs
static data-flow analysis to identify the access control checks

1 address public owner;
2 uint256 constant howMuchToBecomeOwner= 1000 ether;
3 function changeNameSymbol(string _n, string _s)external{
4 if (msg.sender==owner){
5 /* omitted code */
6 }
7 function changeOwner(address _newowner) payable external{
8 if (msg.value>=howMuchToBecomeOwner){
9 owner.transfer(msg.value);

10 owner=_newowner;}
11 }

Fig. 4. Intended behavior example.

that are implemented and used in the contract, as well as
the corresponding state variables storing access control data.
AChecker also identifies critical instructions that should be
protected. (2) Using the identified access control state variables
and critical instructions (from the previous step) as sinks,
AChecker explores possible taint paths from user inputs (taint
sources) to the sinks. (3) AChecker symbolically executes
paths of the taint-flows reaching sinks to filter out infeasible
paths and separate intended behavior cases from exploitable
true vulnerabilities. Finally, AChecker flags the found vulner-
abilities, and the corresponding functions to the users. We
explain the steps in the following sub-sections.

Fig. 5. AChecker workflow.

B. Identifying Access Control Checks
To find access control vulnerabilities, AChecker first iden-

tifies access control checks used in the contract, without
relying on syntactic patterns of access control checks. Before
discussing our approach for identifying access control checks,
we formally define the following based on the functionality
provided by access control checks in smart contracts:

Definition 1 (Access Control Check). Let C be a condition
of a conditional control statement in a smart contract S, and
C validates the callers of the contract S that can execute the
code protected by the condition C, then the condition C is an
access control check.

Definition 2 (Access Control State Variable). In an access
control check C, if C compares the caller of the contract
against value(s) stored in a storage data item D or if C uses
the contract caller to load a value from a storage data item
D to evaluate C, then D is an access control state variable.

Definition 3 (Authorized User). In an access control check C
that uses an access control state variable D, any user whose
address ∈ D is an authorized user to execute the contract
code protected by the access control check C.

4

For example, in the contract code in Figure 1, the function
switchLiquidity has the modifier onlyOwner. This
modifier has the statement if(owner==msg.sender) that
checks if the address of the caller (msg.sender) is equal to
the address stored in the state variable owner. The execution
of the function switchLiquidity happens only when the
if condition is true. Thus, in function switchLiquidity,
the condition owner==msg.sender is an access control
check, the owner is an access control state variable, and the
user whose address stored in the state variable owner is an
authorized user to execute the function switchLiquidity.

The definitions mentioned above state that, the unique
functionality of all access control checks, regardless of how
they are written, is to check the callers of the smart contract
against the access control state variables (representing various
authorized users). Thus, our intuitive idea to identify access
control checks in the contract code is to analyze for conditions
that reference the contract caller and either compare it to val-
ues loaded from the contract storage (i.e., access control state
variables) or use it to load values from the contract storage
to evaluate the condition. In smart contracts, a built-in global
variable is used to obtain the contract caller – msg.sender
in the source code and CALLER in the bytecode. Therefore,
we can leverage this feature to perform our analysis.

Algorithm 1: Identifying Access Control Checks
Input: C ▷ Conditions
Output: AC,SV ▷ Access control checks and state variables

1 begin
2 AC ← ∅ ▷ Initial set of access control checks
3 foreach condition c ∈ C do
4 flow ← BackwardAnalysis(c)
5 if CALLER & SLOAD ∈ flow then
6 s ← SlotOf(SLOAD)
7 if s /∈ mappings then
8 AC ← AC ∪ c; SV ← SV ∪ s
9 else if s ∈ mappings & TypeValue(s) ∈

Boolean then
10 AC ← AC ∪ c; SV ← SV ∪ s
11 else if s ∈ mappings then
12 t ← ForwardAnalysis(c,s)
13 if not t then
14 AC ← AC ∪ c; SV ← SV ∪ s
15 return AC,SV

We conduct our analysis to identify access control checks
by statically analyzing data-flows of the conditions in the
contract to obtain conditions that have data dependency on
the two instructions, CALLER and SLOAD (storage load),
as shown in Algorithm 1. The algorithm takes as input the
conditions in the contract code and returns as output, the
access control checks implemented in the contract and the cor-
responding access control state variables. For each condition
in the contract, AChecker first performs backward data-flow
analysis starting at the condition (lines 3-4). By considering all
data dependencies, the resulting flows contain all instructions
that are involved in evaluating the condition. Then AChecker
filters conditions having data dependency on CALLER and

SLOAD instructions (line 5). These filtered conditions form
an overapproximation of access control checks.

For example, in the code in Figure 1, the modifier
onlyOwner (lines 5-11) is used as access control to protect
the function switchLiquidity. The simplified bytecode
of this function, in static single assignment (SSA) form, is
shown in Figure 6. The code of the first block (lines 1-
6) checks if the caller is the owner (represents the code
of the modifier onlyOwner). If so, the execution is di-
rected to the block at line 8 to execute the code of the
function switchLiquidity. Otherwise, the execution goes
to the block at line 7, where REVERT instruction halts the
execution, and reverts changes made to the contract state.

Fig. 6. Bytecode of the function switchLiquidity in Figure 1.

To identify the access control check performed in this
function, AChecker performs backward data-flow analysis
starting at the condition of the JUMPI instruction at line
6. AChecker will find the data-flow %1=SLOAD(#1),
%2=EXP(#100,#0), %3=DIV(%1,%2), %4=CALLER,
%5=EQ(%4,%3). The instructions %1=SLOAD(#1) and
%4=CALLER are part of this data-flow to evaluate the con-
dition of the JUMPI instruction. Thus, the condition of the
JUMPI at line 6 is identified as an access control check, and
the storage location #1 (read by instruction %1=SLOAD(#1))
is identified as an access control state variable (that should not
be written by the contract users).

A challenge faced in our analysis is that the conditions
obtained by the backward data-flow analysis are (by design) an
over-approximation of the checks (conditions) in the contract
code that have data dependency on CALLER and SLOAD
instructions. Thus, the filtered checks may contain non-access
control checks that behave similar to access control checks
(i.e., reference the contract’s caller, and load a value from stor-
age). These cases result from conditions in which the contract
caller is used as a key to access values in storage mappings,
such as require(balances[msg.sender] >= amount).

To address this challenge, AChecker excludes these condi-
tions from the set of conditions identified as access control
checks. The core idea is to use data-flow analysis to dif-
ferentiate between the mappings representing access control
state variables and other mappings. The idea is based on two
observations. First, the values of mappings used as access
control state variables are only used for validating callers,
not for any other operations, e.g., mathematical operations.

5

Second, mappings representing access control state variables
usually store Boolean values. Based on these two observations,
AChecker performs further analysis of the conditions returned
by the backward data-flow analysis in which the contract caller
is used to access mappings (lines 6-14 in Algorithm 1).

For each condition returned by the backward data-flow
analysis, AChecker confirms the condition as an access control
check if the corresponding state variable used in the condition
is not a mapping (lines 7-8). Otherwise, if the state variable
is a mapping and stores Boolean values, then AChecker
confirms the condition as an access control check (lines 9-
10). Although type information is not available at the EVM
bytecode level, we found that the data type of the values stored
in mappings can be inferred from the bytecode. This is because
for mappings storing Boolean values, the compiler uses AND
bitmasking with Boolean values, where any Boolean value
loaded from the storage gets bitmasked using ‘0xff’ (Boolean
holds one byte of the storage location). Finally, if the state
variable is a mapping and does not store Boolean values,
AChecker performs static forward data-flow analysis starting
at the SLOAD instruction to check if the mapping referenced
in the condition is used by any other operation following
the condition. If no such data-flow is found, the condition
gets confirmed as an access control check (lines 11-14). The
analysis stops when reaching a STOP or RETURN instruction.

After identifying access control checks and the correspond-
ing state variables, AChecker searches for critical instructions
in the contract code and proceeds to the next step.

C. Violated/Missing Access Control Checks Detection

In the second step, AChecker performs static taint analysis
to check if any of the access control state variables and critical
instructions are manipulated by attackers. The performed taint
analysis is both inter-procedural and context-sensitive, and
tracks taints through the contract storage.

The analysis uses user inputs as sources of taint, and uses
critical instructions along with access control state variables as
sinks. Table I shows the sinks used by AChecker for each vul-
nerability. Each SSTORE instruction that writes to any of the
identified access control state variables is used as a sink to de-
tect violated access control checks. Further, SELFDESTRUCT
instructions, and the address parameters of SELFDESTRUCT
and DELEGATECALL instructions are used as sinks to detect
missing access control checks, as the target addresses of
SELFDESTRUCT and DELEGATECALL should not be ma-
nipulated by unauthorized users. If the attacker is able to
control the address parameter of SELFDESTRUCT, they will
receive the funds of the contract when the SELFDESTRUCT
is executed, as discussed in Section II-B. Similarly, setting
the address of the DELEGATECALL will allow attackers to
execute their own code in the context of the contract, thereby
manipulating the contract state and changing its behavior.

A sanitizer is a code check that prevents contract users
from either controlling a critical instruction or manipulating
an access control state variable. There are two types of
unsanitized taint flows that are considered by AChecker, (1)

TABLE I
EVM INSTRUCTIONS DEFINED AS SINKS BY AChecker. THE ARGUMENT IN

BOLD IS THE SINK; OTHERWISE, THE WHOLE INSTRUCTION IS A SINK.

Vulnerability EVM Instruction
VAAC SSTORE <key, value>, key ∈ AC state variables
MAAC SELFDESTRUCT
MAAC SELFDESTRUCT <addr>
MAAC DELEGATECALL <, addr, ...>

taint flows to access control state variables are considered as
violated access control checks, and (2) taint-flows to critical
instructions are considered as missing access control checks.
Finding taint flows to access control state variables and critical
instructions results in discovering access control violations as
well as missing access control, where the attacker is able
to manipulate the access control state variables or critical
instructions. This includes the cases when incorrect access
control modifier names that can be bypassed by attackers are
used as access control checks.

D. Potentially Intended Behaviors Filtering

One of the challenges faced when analyzing smart contracts
for access control vulnerabilities is the intended behavior
cases (Section II-C). Based on our observations, we found
that a lack of access control does not always result in a
vulnerability, as the developer may implement some other non-
access control checks. The contract code may intentionally
allow even unauthorized users of the contract (any Ethereum
account) to manipulate access control state variables but only
under specific non-access control constraints. These cases are
challenging for static analysis approaches to distinguish from
vulnerabilities, as there are often no access control policy spec-
ifications. Figure 4 shows an example in which unauthorized
users can write to the access control state variable owner (line
11) when they pay a minimum of 1000 Wei. Static analysis
tools would falsely flag this as a vulnerability.

AChecker addresses this challenge by performing symbolic-
based analysis to infer these non-access control checks im-
plemented in these cases, and then flagging these cases as
potentially intended behaviors. Our intuition in reasoning
about intended behavior cases is that an unprotected statement
that manipulates an access control state variable, but only
under specific non-access control constraints, is likely to be a
potentially intended behavior implemented by the developer.

Definition 4 (Potentially Intended Behavior). In a smart
contract, manipulating an access control state variable with
no access control check, and under other non-access control
constraints, is most likely an intended behavior rather than an
access control vulnerability.

A naive approach to filter potentially intended behaviors
would be to flag as potentially intended any unprotected
statement that updates access control data and is guarded by
non-access control checks. However, blindly filtering cases
in this way will result in several vulnerabilities falsely re-
ported as intended behaviors. For example, Figure 7 shows a
vulnerable function initialize implemented to initialize

6

the access control state variable operator (line 4) while
initialized is ‘false’. The developer mistakenly did not
add a statement to set the initialized to ‘true’ after line 4;
which resulted in a vulnerability. However, deciding intended
behavior just based on searching for implemented checks will
report this vulnerability as an intended behavior.

1 bool public initialized = false ;
2 function initialize () {
3 require (! initialized);
4 operator = msg.sender;
5 }

Fig. 7. Example of a vulnerability due to an always True check.

Therefore, to analyze for potentially intended behaviors,
AChecker uses symbolic execution [26] to infer constraints of
manipulating access control state variables, and differentiate
potentially intended behaviors from vulnerabilities as below.
Our design choice to use symbolic execution is supported
by the observation that constraints implemented in intended
behaviors are usually few, therefore tractable, and can hence
be solved using satisfiability modulo theories (SMT) solvers.

When a taint-flow is found to an access control state
variable, AChecker executes the taint-flow path symbolically
to generate constraints under which the taint flows from
the taint source to the access control state variable, then
uses an SMT solver to check if the path is feasible. If the
path is feasible, AChecker uses the SMT solver to find an
assignment that makes these constraints unsatisfiable through
negating the constraints. If an assignment is found to make the
negated constraints satisfiable, then AChecker reports this as
a potentially intended behavior as the taint-flow is not always
feasible – otherwise, AChecker reports it as a vulnerability.

For the example in Figure 4, AChecker finds that owner
gets tainted at line 10. Then, AChecker symbolically executes
the taint-flow path to synthesize the constraints under
which owner gets tainted. In this case, the synthesized path
constraints are “msg.value≥ howMuchToBecomeOwner∧
howMuchToBecomeOwner = 1000”. The path is
feasible and the SMT solver will find an assignment
for msg.value that satisfies the negated constraint
“!msg.value ≥ howMuchToBecomeOwner ∧
howMuchToBecomeOwner = 1000”, as we are interested
in proving that the original constraints (without negation) are
not always satisfied. AChecker will flag this as a potentially
intended behavior as it was able to find cases under which
manipulating the state variable owner is not always feasible.
This is because restricting execution of the code updating
owner state variable by implementing specific constraints is
likely intended by the developer to manage owner writes.

When a solution is not found to make the constraints
unsatisfiable, if the constraints depend on storage variables
getting updated in the taint-flow path, AChecker calls the SMT
solver again using the updated state. We need this to infer the
intended behavior cases usually used for initializing storage
variables only once and then set a specific storage variable
to prevent future initialization. Further, our symbolic analysis

abstracts loop analysis where loops get unrolled to at most
three iterations to reduce overhead and filter more potentially
intended behavior cases. With that said, we observed from our
experiments that loops rarely get used in paths that manipulate
access control state variables.

E. Implementation

The implementation of AChecker relies on eTainter [18],
a static taint analyzer for smart contracts, to perform taint
analysis, and on teEther [27], a symbolic analysis framework
for smart contracts, to generate the control flow graph (CFG)
and perform symbolic analysis. We built up on the symbolic-
execution module of teEther to perform our intended analysis,
specifically, to unroll loops and negate generated constraints
when inferring potential intended behavior.

IV. EVALUATION

We evaluate AChecker by answering the following three
research questions (RQs):
RQ1. How effective is AChecker in detecting access control
vulnerabilities compared to the prior work?
RQ2. How precise is AChecker in inferring potentially in-
tended behaviors in smart contracts?
RQ3. What is the performance of AChecker?
RQ4. How prevalent are access control vulnerabilities in smart
contracts?

A. Experimental Setup

1) Datasets: In our evaluation, we use three datasets, as
summarized in Table II. The first is the CVE dataset consisting
of 15 contracts, where each contract is assigned a CVE
(Common Vulnerability and Explosures) for an access control
vulnerability. This dataset has been collected by the authors of
SPCon [8] to evaluate their tool and compare with the prior
work. They originally collected 17 contracts in the SPCon
paper, but they reported that one contract is not the vulnerable
contract discussed by the CVE-2021-3006 (the disclosing
report of this CVE referenced a non-vulnerable contract).
Another contract (CVE-2018-17111) has a vulnerability in a
modifier that is not used by any function in the contract, so
the code of the modifier is unreachable. Therefore, we omitted
these two contracts from the dataset.

The second dataset is the SmartBugs-wild public dataset
which consists of about 47,518 contracts. The SmartBugs-
wild dataset has been collected by Durieux et al. [17] to
evaluate nine static analysis tools. Finally, the third dataset
is the Popular-contracts dataset from eTainter [18]. This
dataset consists of 3,000 contracts deployed on the Ethereum
blockchain, which have the largest number of transactions as
of January 2022. Thus, this dataset represents contracts that
are highly used in the Ethereum blockchain.

2) Setup: We run the experiments on five Intel Xeon 2.5
GHz machines; each machine has one core. On each machine,
we allocate 48GB of RAM for each run. For all tools, we set a
timeout value of 10 minutes (600 seconds) per smart contract.

7

TABLE II
DATASETS USED IN OUR EVALUATION.

Dataset Number of Contracts

CVE dataset 15
SmartBugs-wild dataset 47,518
Popular-contracts dataset 3,000

3) Method and Metrics: To answer RQ1, we compare the
effectiveness of AChecker by comparing it to eight analysis
tools that target detecting all or a subset of access control
vulnerabilities. These tools are SPCon [8], Ethainter [7],
Securify [9], Mythril [12], Manticore [10], SmartCheck [14],
Maian [11], and Slither [13]. We use two different datasets
to compare against prior work; both datasets have been used
by previous studies [8], [17] to evaluate the tools we are
comparing with. First, we use the CVE dataset, in which the
vulnerabilities and their locations are known for each contract.
Thus, we have the ground truth for our comparison. For each
tool, we run the tool on the contracts in the dataset and then
count how many vulnerabilities the tool detects. This allows
us to estimate the recall of each tool. As Ethainter’s source
code is not publicly available, in our experiments, we use the
online deployment of Ethainter [28] mentioned in their paper.

Second, as the CVE dataset has limited contracts, we
use the SmartBugs-wild dataset to compare precision of the
tools. SmartBugs-wild dataset has no ground truth of the
vulnerabilities in each contract. We thus follow the approach
of SPCon [8] to manually inspect a subset of vulnerabilities
flagged by each tool in order to determine whether these
vulnerabilities are true-positives or false-positives. For the
tools that detect other classes of vulnerabilities, only the
access control vulnerabilities are selected for inspection and
for calculating the precision (which is a fraction of true
access control vulnerabilities of all selected samples). This
does not have an effect on the precision of these tools as the
reported access control false-positives by these tools are not
true vulnerabilities of other types detected by the tools.

To avoid bias, we focused on the subset of vulnerabilities
that was selected by the authors of SPCon, and borrowed
their inspection results for the tools we used for comparison.
In that work, for each tool that reported a low number of
vulnerabilities (Maian, Manticore, and SPCon), all the reported
cases were inspected (44, 47, and 44, respectively). For all
other tools, statistical sampling was used to obtain a 90%
confidence level and a margin of error of 10% on whether the
sample is representative of all reported cases. Thus, the number
of samples selected is different for each tool. We applied the
same approach to select samples for AChecker: approximately
60 samples. Further, for AChecker, two smart contract se-
curity researchers independently inspected the vulnerabilities
reported by the tool and only the vulnerabilities agreed on by
both researchers are considered as true vulnerabilities. We use
the inspection results to estimate the precision of each tool.

To answer RQ2, we run AChecker on the SmartBugs-wild
dataset and randomly select a subset of 10 contracts marked

by AChecker as having potentially intended behaviors; we add
to this set 10 randomly selected contracts marked by AChecker
as vulnerable. We recruited a third-party expert – a graduate
student with smart contracts security auditing expertise, who
is not an author of this paper. We asked the expert to
manually inspect the contracts to determine which constitute
true vulnerabilities, without knowing about our classification
of intended behaviors. Our goal is to check if the results
of the expert’s classification of the intended behaviors match
the results reported by AChecker. We also check whether the
contracts we mark as potentially intended behaviors are also
reported as vulnerabilities by prior work.

To avoid bias, we used the reported analysis results for
Securify, Mythril, Manticore, SmartCheck, Maian, and Slither,
and ran the other two tools, Ethainter and SPCon on these
contracts ourselves (as prior work did not report these results).

To answer RQ3, we run AChecker on SmartBugs-wild and
Popular-contracts datasets, and calculate the average analysis
time of the contracts that AChecker analyzed successfully.
When AChecker cannot analyze a contract within the timeout-
value window, we consider AChecker as unable to analyze it.

To answer RQ4, we count contracts flagged as having
access control vulnerabilities by AChecker on the SmartBugs-
wild dataset and Popular-contracts dataset.

B. Experimental Results

RQ1 (Effectiveness):
a) CVE dataset: Table III shows the results of comparing
AChecker with the prior work on the CVE dataset. In the table,
✓denotes when the tool was able to detect the vulnerability
for the corresponding CVE. The bottom row shows the overall
recall (detection rate) for each tool on the CVE dataset.
From the table, we see that AChecker detected most of the
vulnerabilities, and has a higher recall than all the other
tools. In particular, AChecker detected eight of the nine
vulnerabilities detected by the other tools, and four additional
vulnerabilities detected by none of the other tools (Section V
discusses the reason for the three undetected vulnerabilities).
Thus, AChecker has an overall recall of 80% on the CVE
dataset. SPCon had the next best recall (60%). The other tools
all had less than 30% recall on the CVE dataset.
b) SmartBugs-wild dataset: Table IV shows a summary of
the results of comparing AChecker with the other existing
tools on the SmartBugs-wild dataset. The first row (Reported)
shows the total number of vulnerabilities reported by the
tool, the second row (Inspected) shows the number of sample
vulnerabilities we manually inspected to estimate the precision
of the tool, and finally the row at the bottom (Precision) shows
the estimated precision of the tool.

From Table IV, the results show that our proposed ap-
proach, AChecker, has the highest precision (88.3%) among
all the tools. Further, the tools with the second best precision
are SPCon (81.8%) and Maian (61.4%). However, we see
from the table that SPCon and Maian reported a much smaller
number of vulnerabilities, with 44 vulnerabilities reported by
each tool in comparison to 624 vulnerabilities reported by

8

TABLE III
COMPARISON WITH PRIOR WORK ON THE CVE DATASET

(RECALL).

CVE Sl
ith

er

M
ai

an

Sm
ar

tC
he

ck

M
an

tic
or

e

M
yt

hr
il

Se
cu

ri
fy

2

E
th

ai
nt

er

SP
C

on

AC
he

ck
er

CVE-2018-10666 ✓ ✓
CVE-2018-10705 ✓ ✓
CVE-2018-11329 ✓ ✓
CVE-2018-19830 ✓
CVE-2018-19831 ✓ ✓ ✓
CVE-2018-19832 ✓ ✓ ✓ ✓
CVE-2018-19833 ✓
CVE-2018-19834 ✓
CVE-2019-15078 ✓ ✓ ✓ ✓
CVE-2019-15079 ✓
CVE-2019-15080 ✓ ✓
CVE-2020-17753 ✓ ✓ ✓
CVE-2020-35962
CVE-2021-34272 ✓ ✓
CVE-2021-34273 ✓

Recall% 6 13 6 0 26 0 0 60 80

TABLE IV
COMPARISON WITH PRIOR WORK ON THE SMARTBUGS-WILD DATASET

(PRECISION).

Sl
ith

er

M
ai

an

Sm
ar

tC
he

ck

M
an

tic
or

e

M
yt

hr
il

Se
cu

ri
fy

SP
C

on

AC
he

ck
er

Reported 2,356 44 384 47 1,076 614 44 624
Inspected 66 44 58 47 64 61 44 60

Precision% 24 61 29 19 39 33 81.8 88.3

AChecker. This could be an indicator that these tools missed
a lot of true vulnerabilities, and hence they may have lower
recall than what we have seen earlier on the CVE dataset.

To establish a better understanding of the capability of the
prior work to detect existing vulnerabilities in the SmartBugs-
wild dataset, we checked how many of the true vulnerabilities
reported by AChecker (we have manually confirmed these as
true vulnerabilities), were reported by each of the existing
tools. To avoid bias, we have used the original analysis results
available with SmartBugs-wild dataset [17] for six tools:
Slither, Maian, SmartCheck, Manticore, Mythril, and Securify.
We ourselves ran the other two tools (Ethainter and SPCon)
that were not considered in the SmartBugs study [17].

TABLE V
COMPARISON WITH PRIOR WORK ON THE SMARTBUGS-WILD DATASET

(RECALL).

TPs reported by AChecker Sl
ith

er

M
ai

an

Sm
ar

tC
he

ck

M
an

tic
or

e

M
yt

hr
il

Se
cu

ri
fy

E
th

ai
nt

er

SP
C

on

53 11 6 0 0 11 5 0 10

The results are shown in Table V. The results show that out
of the 53 true vulnerabilities that are detected by AChecker,

all the other tools together detected only 24 vulnerabilities. We
also cross-checked the vulnerabilities reported by other tools
from the total true positives. AChecker (69.62%) outperformed
all tools in reporting true vulnerabilities: Slither (44.4%), Ma-
ian (15.8%), Smartcheck (15.8%), Manticore (5.9%), Mythril
(43.3%), Securify (15.2%), Ethainer (7%), SPCon (21%).
Answer to RQ1: AChecker outperforms all existing tools for
detecting access control vulnerabilities, and is able to detect
more true vulnerabilities with fewer false alarms.
RQ2 (Potentially Intended Behaviors): Table VI shows the
results of the manual inspection for the 20 selected contracts.
The first row shows the results for contracts that are marked by
AChecker as vulnerable and the second row shows the results
for contracts that are marked as potentially intended behaviors.
The results demonstrate that the third-party expert classified
eight of the 10 vulnerable cases reported by AChecker as true
vulnerabilities, and two as false-positives. One false-positive
is for a code protected by an access control checked in another
external contract; hence, not recognized by AChecker. In the
second case, the contract allows anyone to update the contract
manager, but it calls an external code to authenticate the
new manager, and it may eventually store the authenticated
manager – the external code is not available to verify, though.

Further, the third-party expert classified all the 10 poten-
tially intended behavior cases reported by AChecker as benign
cases intentionally implemented rather than vulnerabilities.
Moreover, we found that 70% of the 10 intended behavior
cases were reported by the existing tools as vulnerabilities,
adding to the false-positives of these tools. Overall, AChecker
reported 418 functions with intended behavior cases. 221 of
these cases are also reported by other tools as having access
control vulnerabilities (though we did not validate them). This
highlights the need for an approach like AChecker that filters
the intended behaviors from exploitable true vulnerabilities.
Answer to RQ2: Our approach for filtering potentially in-
tended behavior has high precision in inferring the true in-
tended behavior cases.

TABLE VI
INTENDED BEHAVIOR FILTERING (PRECISION).

Classification Samples True Vulnerabilities

Vulnerable 10 8
Potentially intended behavior 10 0

RQ3 (Performance): By running AChecker on all the con-
tracts in the SmartBugs-wild dataset, we found that the average
analysis time of AChecker per contract is 11.74 seconds. This
time includes the time taken by the symbolic execution to filter
potentially intended behaviors. We obtained a similar average
analysis time, 10.55 seconds for AChecker when running on
the Popular-contracts dataset. In both datasets, AChecker timed
out in about 17% of the contracts. Most of the timeouts were
due to the inability of teEther [7] to generate the CFG.
Answer to RQ3: AChecker has an average analysis time of
about 11 seconds per contract.

9

RQ4 (Prevalence of Access Control Vulnerabilities):
SmartBugs-wild dataset: As mentioned in the results of
RQ1, AChecker flagged 624 contracts as having access control
vulnerabilities with a precision of about 88%.
Popular-contracts dataset: Table VII shows the results of
analyzing the Popular-contracts dataset by AChecker. Results
show that AChecker flagged 21 contracts as having access
control vulnerabilities. To determine how many of these re-
ported vulnerabilities are true vulnerabilities, we inspected
all the reported cases in all the contracts whose source code
is available on Etherscan [29], an explorer of the Ethereum
blockchain. We restricted ourselves to contracts with source
code as it is difficult to inspect the bytecode of contracts for
vulnerabilities. Further, without the source code, running a
smart contract following the trace found by taint-flow and
symbolic execution is insufficient to identify vulnerabilities.
Out of the flagged 21 contracts, 10 contracts have source
code available. Our manual inspection of the vulnerabilities
in these 10 contracts show that 9 of the vulnerabilities are
true vulnerabilities (90% precision), and one is false-positive.
Answer to RQ4: AChecker flagged 624 and 21 vulnera-
ble contracts in the SmartBugs-wild and Popular-contracts
datasets, respectively, showing that access control vulnerabil-
ities are prevalent in these datasets.

TABLE VII
RESULTS OF ANALYZING POPULAR-CONTRACTS BY AChecker.

Flagged Inspected TPs

21 10 9 (90%)

V. DISCUSSION

A. Result Analysis

As mentioned in RQ1, AChecker did not report three vulner-
abilities in the CVE dataset. In one case, tx.origin is used
in an access control check instead of msg.sender. AChecker
does not analyze for this case as it is an outdated vulnerability
that is found mostly in old contracts and can be found using
a string search. Of the existing static analysis tools, Mythril,
Slither, and SmartCheck can detect this vulnerability. Adding
support for tx.origin in AChecker is straightforward, and
is a potential direction for future work.

The other two cases are for functions that lack access
control. These two cases are out of the scope of AChecker as
AChecker analyzes for missing access control for a set of pre-
defined instructions. In general, static analysis approaches such
as AChecker cannot decide the contract functions that should
be protected, due to the lack of access control specifications.
Although SPCon can detect these two cases as it uses the
transactions history to mine the access control policy of the
contract, neither of these two cases is detected by SPCon.

The results of AChecker on the three datasets show that
most of the reported vulnerabilities are caused due to having
violated access control checks. Only two existing analysis
tools, SPCon and Ethainter, analyze for these vulnerabilities.

However, both tools failed to detect many of the vulnerabil-
ities found by AChecker. Ethainter’s dependency on specific
syntactic patterns was the main reason for its undetected cases.

For SPCon, the contracts that can be analyzed are limited
due to having a low number of transactions, and it is chal-
lenging to increase the number of transactions to improve
SPCon. As discussed (Section I), SPCon requires transactions
to be performed by only authorized users of the functions,
as per the desired contract security policy, and it is difficult
to determine whether or not a transaction obeys the security
policy when the contract security policy is not known. This
is because transactions that do not obey the security policy
would result in increased false-negatives and false-positives.

Moreover, SPCon failed to mine access control roles for
several vulnerable contracts where each contract has tens of
thousands of transactions. An example taken from a vulnerable
contract having about 183,533 transactions [30] is shown in
Figure 8. This contract has a vulnerability that enables anyone
to become an owner of the contract and perform actions such
as withdrawing the contract Ether balance. SPCon was not able
to mine the access control role for the vulnerable function
SAC because this function was called by multiple different
accounts; hence SPCon’s approach considers it as a public
function that can be called by anyone, and ignores it.

1 function SAC() public {
2 owner = msg.sender;
3 balances[owner] = totalDistributed;
4 }

Fig. 8. Violated access control check vulnerability undetected by prior work.

The results of RQ2 also highlighted the capability of
AChecker to infer many cases of intended behavior reported
as vulnerabilities by the existing analysis tools. An example
case is shown in Figure 9. This code is taken from a contract
implementing a token named Peculium [31], and there are
14,972 transactions on this contract at the time of writing.
The design of the contract allows the freeze possibility of
tokens. Thus, the transfer function (line 8) has an access
control check at line 9 so that only unfrozen accounts (stored
at balancesCanSell) can transfer tokens. The contract
allows token owners to defrost their tokens after a predefined
date using the function defrostToken. Analyzing con-
straints of the defrostToken function enabled AChecker to
infer that this is a potential intended behavior of the contract.

1 mapping(address => bool) public balancesCanSell;
2 uint256 public dateDefrost;
3 function defrostToken() public
4 { // Defrost your tokens, after the date of the defrost
5 require(now>dateDefrost);
6 balancesCanSell[msg.sender]=true;
7 }
8 function transfer(address _to, uint256 _value) public

returns (bool) {
9 require(balancesCanSell[msg.sender]);

10 return BasicToken.transfer(_to,_value);
11 }

Fig. 9. Intended behavior reported as a vulnerability by prior analysis tools.

10

B. Limitations

AChecker has three main limitations. First, it performs intra-
contract analysis and hence does not analyze access control
delegated to other contracts. Second, it analyzes missing
access control only for a set of predefined critical instructions
due to the lack of access control specifications of contracts.
Thus, AChecker does not analyze missing access control
for functions that should be protected if they do not have
predefined instructions. Finally, AChecker only checks access
granted to the contract callers on functions and, what we call,
critical instructions. This is a common way to authorize users
in smart contracts, but other methods are also possible.

C. Threats to Validity.

An external threat to validity is the limited number of
contracts used to evaluate effectiveness of AChecker and
compare it to the prior work (15 contracts). We partially
mitigated this threat by using a dataset with a confirmed
set of CVEs. In addition, we used the Smartbugs dataset
consisting of 47,518 real-world contracts, and the Popular-
contracts dataset (with 3,000 real-world widely used contracts)
to evaluate the precision of AChecker and compare with the
prior work. Both datasets have been used by previous studies to
evaluate the analysis tools we use for comparison. We avoided
using datasets injected with artificial vulnerabilities as, to our
knowledge, there is no existing tool that injects access control
vulnerabilities covered by the proposed approach - injecting
such vulnerabilities ourselves may bias the evaluation.

An internal threat to validity is the possible bias due to
manual inspection of the sample vulnerabilities to compare
with the prior work. We partially mitigated this threat in
two ways. First, we used the inspection results from previous
studies for the analysis tools we are comparing with AChecker,
where possible. Second, two smart contract researchers inde-
pendently inspected the vulnerabilities of AChecker, and only
those agreed on by both are counted as true vulnerabilities.

VI. RELATED WORK

Several static analysis tools have been proposed
for detecting various security bugs in smart
contracts [32], [27], [11], [33], [10], [34], [9]
, [7], [14], [8], [13], in addition to other studies [17],
[35] that evaluated the efficacy of these tools. Many of
these proposed tools targeted detecting access control
vulnerabilities [9], [14], [10], [12], [11], [27], [7], [8].
SPCon [8] analyzes smart contracts for permission bugs.
SPCon first uses the contract transactions history available on
the blockchain to mine access control roles of the contract.
Then it detects permission bugs via conducting symbolic-
analysis-based conformance testing. However, the dependency
on the transaction history to mine access control roles makes
SPCon unable to mine several access control roles; hence it
leaves several bugs undetected (as we have shown).

Another work, Ethainter [7], was the first tool to focus
on detecting composite vulnerabilities (i.e., access control
vulnerabilities). Ethainter statically analyzes smart contracts

for composite vulnerabilities by performing information-flow
analysis using inference rules of a designed abstract input
language of the bytecode. However, Ethainter’s approach has
several drawbacks. First, Ethainter’s inference rules expect
contracts to be coded in a specific style; hence the access con-
trol checks detected by these rules are rather rigid [36], which
results in several false-negatives and false-positives. Second,
Ethainter’s rules coarsely over-approximate defining access
control checks, thereby defining several irrelevant conditions
as access control checks, resulting in high false-positive rate.

Several tools use static analysis to detect general security
bugs in smart contracts, including cases of access control
vulnerabilities. Securify [9] checks for the presence or lack of
specific code patterns of access control before some code state-
ments, such as those that kill the contracts, through checking
for compliance or violation of pre-defined security patterns.
Maian [11] only analyzes for suicidal and prodigal contracts,
in which attackers can kill or steal Ether. Smartcheck [14] is
an AST-based approach that employs XPath pattern matching
to detect several bugs. However, only a few cases of access
control vulnerabilities can be expressed as XPath patterns.
Slither [13] performs taint-analysis in the contract source code
to detect several bugs. However, Slither supports the detection
of a few cases of access control vulnerabilities.

Other tools use symbolic execution to find vulnerabilities.
Mythril [12] uses symbolic execution to detect a large group of
security bugs, including cases of access control bugs. However,
the need to execute multiple functions in sequence to reach
the vulnerable state and detect vulnerabilities results in false-
negatives. Manticore [11] is another symbolic analysis tool
for smart contracts. However, similar to Mythril, its detection
capability is limited by the number of transactions needed
to trigger bugs, and it only looks for arbitrary code execu-
tion through delegatecall. Finally, teEther [27] employs
symbolic execution to generate exploits for a group of access
control-similar vulnerabilities; however, combining symbolic
paths of several functions to generate exploits makes teEther
scales to only a fraction of Ethereum smart contracts [7].

VII. CONCLUSION

Access control vulnerabilities in smart contracts can lead
to significant financial loss. This paper proposed AChecker,
a static analysis approach for finding violated and missed
access control checks in smart contracts. AChecker employs
a data-flow analysis technique to determine access control
checks implemented in the contract, and a symbolic execution-
based approach to distinguish cases implemented as intended
behavior from vulnerabilities. We evaluated AChecker on three
smart contract datasets, and the results show that AChecker ef-
fectively discovered access control vulnerabilities with a much
higher recall and precision than eight existing analysis tools.
Further, AChecker flagged 21 contracts of the most popular
Ethereum contracts as having access control vulnerabilities -
90% of these were true vulnerabilities. Finally, AChecker has
an average analysis time of about 11 seconds per contract.

11

ACKNOWLEDGMENT

This work was supported in part by a grant from the
Natural Sciences and Engineering Research Council of Canada
(NSERC), and Four-Year Fellowship from UBC. We thank the
anonymous reviewers of ICSE’23 for their helpful comments.

REFERENCES

[1] G. Wood et al., “Ethereum: A secure decentralised generalised trans-
action ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp.
1–32, 2014.

[2] (2017) Cardano blockchain. [Online]. Available: https://www.cardano.
org/en/what-is-cardano

[3] Solidity. [Online]. Available: https://docs.soliditylang.org/en/v0.5.1
[4] Ethereum networks. [Online]. Available: https://ethereum.org/en/

developers/docs/networks
[5] (2021) Value defi-rekt 2. [Online]. Available: https://rekt.news/

value-rekt2
[6] (2018) Accidental’s bug froze $280 million worth of ether in

parity wallet. [Online]. Available: https://www.cnbc.com/2017/11/08/
accidental-bug-may-have-frozen-280-worth-of-ether-on-parity-wallet.
html

[7] L. Brent, N. Grech, S. Lagouvardos, B. Scholz, and Y. Smaragdakis,
“Ethainter: a smart contract security analyzer for composite vulner-
abilities,” in Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2020, pp. 454–
469.

[8] Y. Liu, Y. Li, S.-W. Lin, and C. Artho, “Finding permission bugs in smart
contracts with role mining,” in Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2022, pp.
716–727.

[9] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and
M. Vechev, “Securify: Practical security analysis of smart contracts,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, 2018, pp. 67–82.

[10] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist,
T. Brunson, and A. Dinaburg, “Manticore: A user-friendly symbolic
execution framework for binaries and smart contracts,” in 2019 34th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2019, pp. 1186–1189.

[11] I. Nikolić, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding
the greedy, prodigal, and suicidal contracts at scale,” in Proceedings of
the 34th annual computer security applications conference, 2018, pp.
653–663.

[12] (2019) Mythril. [Online]. Available: https://github.com/ConsenSys/
mythril

[13] J. Feist, G. Grieco, and A. Groce, “Slither: a static analysis framework
for smart contracts,” in 2019 IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB).
IEEE, 2019, pp. 8–15.

[14] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis of
ethereum smart contracts,” in Proceedings of the 1st International
Workshop on Emerging Trends in Software Engineering for Blockchain,
2018, pp. 9–16.

[15] M. S. Hecht, Flow analysis of computer programs. Elsevier Science
Inc., 1977.

[16] A. Sabelfeld and A. C. Myers, “Language-based information-flow se-
curity,” IEEE Journal on Selected Areas in Communications, vol. 21,
no. 1, pp. 5–19, 2003.

[17] T. Durieux, J. F. Ferreira, R. Abreu, and P. Cruz, “Empirical review of
automated analysis tools on 47,587 ethereum smart contracts,” in Pro-
ceedings of the ACM/IEEE 42nd International conference on software
engineering, 2020, pp. 530–541.

[18] A. Ghaleb, J. Rubin, and K. Pattabiraman, “eTainter: Detecting gas-
related vulnerabilities in smart contracts,” in Proceedings of the 31st
ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2022, p. 728–739.

[19] (2022) AChecker. [Online]. Available: https://github.com/
DependableSystemsLab/AChecker

[20] Business alliance financial circle (BAFC) to-
ken. [Online]. Available: https://etherscan.io/address/
0x9924A7E3A2756Ab8B9A828485f052b6693AaA33E

[21] Unprotected selfdestruct instruction. [Online]. Available: https://
swcregistry.io/docs/SWC-106

[22] Unprotected ether withdrawal. [Online]. Available: https://swcregistry.
io/docs/SWC-105

[23] Delegatecall to untrusted callee. [Online]. Available: https://swcregistry.
io/docs/SWC-112

[24] Airdrop contract. [Online]. Available: https://etherscan.io/address/
0x220348263aab5a038845483f6096895aa59f3977

[25] Sugoi nft nyc 2022. [Online]. Available: https://etherscan.io/address/
0x8088f4612eadb9d60d5c8abf4a9d0fdfc3df2f1e

[26] J. C. King, “Symbolic execution and program testing,” Communications
of the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[27] J. Krupp and C. Rossow, “teEther: Gnawing at ethereum to automatically
exploit smart contracts,” in 27th USENIX Security Symposium (USENIX
Security 18), 2018, pp. 1317–1333.

[28] Web. (2021) contract-library. [Online]. Available: https://contract-library.
com

[29] Etherscan. https://etherscan.io.
[30] Sachio (sch) contract. [Online]. Available: https://etherscan.io/address/

0xf34839b310097fcb4cf3a302dda8cc9b57501083
[31] Peculium (pcl) token. [Online]. Available: https://etherscan.io/address/

0x53148bb4551707edf51a1e8d7a93698d18931225
[32] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart

contracts smarter,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2016, pp. 254–269.

[33] E. Zhou, S. Hua, B. Pi, J. Sun, Y. Nomura, K. Yamashita, and
H. Kurihara, “Security assurance for smart contract,” in 2018 9th IFIP
International Conference on New Technologies, Mobility and Security
(NTMS). IEEE, 2018, pp. 1–5.

[34] C. F. Torres, J. Schütte, and R. State, “Osiris: Hunting for integer bugs in
ethereum smart contracts,” in Proceedings of the 34th Annual Computer
Security Applications Conference, 2018, pp. 664–676.

[35] A. Ghaleb and K. Pattabiraman, “How effective are smart contract
analysis tools? evaluating smart contract static analysis tools using bug
injection,” in Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2020, pp. 415–427.

[36] Y. Smaragdakis, N. Grech, S. Lagouvardos, K. Triantafyllou, and
I. Tsatiris, “Symbolic value-flow static analysis: deep, precise, complete
modeling of ethereum smart contracts.” Proc. ACM Program. Lang.,
vol. 5, no. OOPSLA, pp. 1–30, 2021.

12

https://www.cardano.org/en/what-is-cardano
https://www.cardano.org/en/what-is-cardano
https://docs.soliditylang.org/en/v0.5.1
https://ethereum.org/en/developers/docs/networks
https://ethereum.org/en/developers/docs/networks
https://rekt.news/value-rekt2
https://rekt.news/value-rekt2
https://www.cnbc.com/2017/11/08/accidental-bug-may-have-frozen-280-worth-of-ether-on-parity-wallet.html
https://www.cnbc.com/2017/11/08/accidental-bug-may-have-frozen-280-worth-of-ether-on-parity-wallet.html
https://www.cnbc.com/2017/11/08/accidental-bug-may-have-frozen-280-worth-of-ether-on-parity-wallet.html
https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril
https://github.com/DependableSystemsLab/AChecker
https://github.com/DependableSystemsLab/AChecker
https://etherscan.io/address/0x9924A7E3A2756Ab8B9A828485f052b6693AaA33E
https://etherscan.io/address/0x9924A7E3A2756Ab8B9A828485f052b6693AaA33E
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-105
https://swcregistry.io/docs/SWC-105
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-112
https://etherscan.io/address/0x220348263aab5a038845483f6096895aa59f3977
https://etherscan.io/address/0x220348263aab5a038845483f6096895aa59f3977
https://etherscan.io/address/0x8088f4612eadb9d60d5c8abf4a9d0fdfc3df2f1e
https://etherscan.io/address/0x8088f4612eadb9d60d5c8abf4a9d0fdfc3df2f1e
https://contract-library.com
https://contract-library.com
https://etherscan.io
https://etherscan.io/address/0xf34839b310097fcb4cf3a302dda8cc9b57501083
https://etherscan.io/address/0xf34839b310097fcb4cf3a302dda8cc9b57501083
https://etherscan.io/address/0x53148bb4551707edf51a1e8d7a93698d18931225
https://etherscan.io/address/0x53148bb4551707edf51a1e8d7a93698d18931225

	Introduction
	Motivating Examples
	Violated Access Control Check (VACC)
	Missing Access Control Check (MACC)
	Potentially Intended Behaviors

	AChecker Approach
	Overview of AChecker
	Identifying Access Control Checks
	Violated/Missing Access Control Checks Detection
	Potentially Intended Behaviors Filtering
	Implementation

	Evaluation
	Experimental Setup
	Datasets
	Setup
	Method and Metrics

	Experimental Results

	Discussion
	Result Analysis
	Limitations
	Threats to Validity.

	Related Work
	Conclusion
	References

